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ABSTRACT
Fairness and bias mitigation in data-driven systems has been ex-

tensively studied in recent years. In this paper, we suggest a novel

approach towards fairness analysis and bias mitigation utilizing

the notion of provenance, which was shown to be useful for similar

tasks in the context of data and process analyses. We illustrate the

idea using a simple use-case demonstrating a scenario of mitigat-

ing bias caused by inadequate minority group representation. We

conclude with an outline of opportunities and challenges in devel-

oping provenance-based solutions for bias analysis and mitigation

in data-driven systems.
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1 INTRODUCTION
Data-driven tools are widely used these days. These tools are grad-

ually supplanting humans in a wide range of application domains,

from deciding who should get a loan [1], to automated hiring [2],

students grading [3], and even in assessing the risk of paroling

convicted criminals [4]. With the increasing use of data-driven

tools, we also witness many cases where these tools are biased.

The increasing impact of data-driven methods on society and their

effect on human life, has given rise to increasing interest in the

study of algorithmic fairness and bias mitigation.

The data used in the development of data-driven decision sys-

tems typically undergoes numerous phases, and bias may be in-

troduced at different points [23, 27]. Biased results may stem from

historical bias. For instance, a tool developed by Amazon
1
for hiring

was discriminating against women, since the data used for training

was resumes submitted to the company over a 10-year period. Most

came from men, a reflection of male dominance across the tech

industry. Insufficient data representation of minority groups, lack of

diversity in data sets and data skews are other sources of bias [5, 9].

1
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-

against-women-2018-10
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id Gender Major GPA Internship Hours (IH)

1 M CS 3.75 125

2 F AM 3.8 150

3 F IS 3.5 125

4 M AM 3.9 90

5 F CS 3.8 120

6 F CS 3.8 80

7 M IS 3.5 125

8 M CS 3.5 95

9 M CS 3.8 130

10 F IS 3.75 140

11 M CS 3.85 115

12 F CS 3.65 125

Figure 1: Job Applicants Dataset

Representation issues may present in the collected data, arise from

(over/under) sampling, or emerge as a result of pre-processing and

data cleaning [6, 15]. Bias may also be caused by generalizing from

detailed data to statements in a broader context [21, 26]. For in-

stance, doctors have over-diagnosed ADHD for years after making

generalizations to age, sex, the maturity of the children
2
.

We envision the use of provenance to aid data scientists in the

process of fairness analysis and bias mitigation. Provenance based

solutions would provide explanations, detect the origin of unfair-

ness, and provide the user actionable information to mitigate bias

efficiently. Intuitively, fairness is a property of the dataset that is

induced by the tuples composing it. Namely, values of individual

tuples in the data are combined to compute a fairness measure. For

instance, data representation, dictated by the individuals in the data,

affects the fairness measures of a data-driven system. Provenance

encapsulates information about items in the data set and the effect

of data manipulation on them. Particularly, it may be used to deter-

mine or explain the effect of such manipulation on the existence

of tuples in the data or their value, which in turn can be used to

determine the effect on the representation of different groups in

the data. Thus, provenance can be useful in detecting or explaining

steps in the computation that alter the fairness of the data.

In what follows, we demonstrate the idea with a simple use-case,

showing the use of provenance in maintaining an inadequate rep-

resentation of protected groups in the data where the data transfor-

mation includes only relational algebra operations. We then outline

opportunities and challenges in the pathway towards provenance-

based solutions for more intricate cases.

2 RELATIONAL ALGEBRA AND
REPRESENTATION CONSTRAINTS

We (informally) present a simple use-case, demonstrating the use of

provenance in maintaining adequate groups representation through

a running example.

2
https://www.medicalnewstoday.com/articles/325595##age-related-factors
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Example 2.1. Consider a tech company that is looking to hire new

employees. The company is looking for applicants with a degree in

Computer Science and a GPA of at least 3.7 who have at least 100

hours internship experience at the company. The company’s data

analyst uses the candidates data shown in Figure 1 to extract poten-

tial candidates for a job interview. The applicants dataset consists

of candidates who had internships at the company and majored

in Computer Science (CS) or other related fields, such as Applied

Math (AM), and Information Systems (IS). It includes information

regarding the candidates: gender, major, GPA and internship hours.

The following query can be used to select candidates that meet the

company’s requirement form the dataset.

SELECT *
FROM Applicants AS a
WHERE a.Major='CS' AND a.GPA >= 3.7 AND a.IH >= 100

Candidates selected by the query are highlighted.

The increasing interest and awareness for diversity and under-

represented minority groups in a variety of positions, affect organi-

zations, particularly in their recruitment process. Many law firms,

government agencies, courts, and nonprofit organizations facili-

tate hiring programs based on diversity. E.g., diversity statements

have become an integral part of the materials submitted as part of

applications for academic faculty positions. Continuing with our

running example, note that among the four selected applicants,

there is a single female candidate. To increase diversity, the com-

pany may wish to increase the number of females invited for a

job interview. For example, they may decide to have at least three

females invited. This can be achieved by relaxing the criteria set by

the company for an interview. E.g., selecting applicants who have

majored in other fields, and/or loosening the conditions over the

GPA and/or the candidates’ internship hours.

Intuitively, we wish to allow users to pose constraints on the

cardinality of groups in the data in the result of a sequence of data

manipulation queries. These constraints may express lower bounds

on minority group representation, as in the above example, but

would also allow users to set upper bounds on group representa-

tion, e.g., to avoid data skews. Constraints could also be used to

state proportions between groups in the data. For instance, the

number of black female should be no less than the number of white

male in the output. This problem, extends the notion of query

refinement, which was studied in the context of SQL queries in,

e.g., [19, 24]. While our problem is more general since it considers

a set of constraints on groups in the data, we build on the notion of

query refinement defined in [24] to formulate the problem.

2.1 Problem Formulation
We consider SPJU queries with selection predicates that include

range (<, ≤, ≥, >) and equality (=). Predicates can be defined on

numeric or categorical attributes. We use the definition of [24] for

refinement of numeric and categorical predicates. Due to space

constraints and for ease of presentation, in the rest of the paper we

assume the numeric predicates are in the form of𝐴𝑖 ≥ 𝐶𝑖 where𝐴𝑖

is an attribute and 𝐶𝑖 is a constant, and consider only constraints

on the minimal representation of groups in the result of a query.

Therefor we focus on query relaxation, i.e., increasing the number

of tuples in groups satisfying a predicate. Our solution extends to a

set of (general) constraints on groups representation in the result of

a of query supporting all the aforementioned forms of predicates.

The notation of relaxation as defined in [24] distinguishes be-

tween numeric and categorical predicates. Given a numeric pred-

icate 𝑃𝑖 : 𝐴𝑖 ≥ 𝐶𝑖 (over an attribute 𝐴𝑖 ), a relaxation of 𝑃𝑖 is any

predicate 𝑃 ′
𝑖
: 𝐴𝑖 ≥ 𝐶 ′

𝑖
where 𝐶𝑖 ≥ 𝐶 ′

𝑖
. Categorical attribute permit

only equality predicates and their relaxation is done through the

notion of expansion3, the process of disjunctively adding additional

predicates to a categorical predicate. Namely, if 𝑃𝑖 is a categorical

predicate over an attribute 𝐴𝑖 , a relaxation 𝑃 ′
𝑖
is an expansion of 𝑃𝑖 .

Finally, a query 𝑄 ′
with predicates 𝑃 ′

1
, . . . , 𝑃 ′

𝑘
is a relaxation of the

query 𝑄 with predicates 𝑃1, . . . , 𝑃𝑘 if 𝑃 ′
𝑖
is a relaxation of 𝑃𝑖 .

Example 2.2. Consider again the query 𝑄 given in Example 2.1.

The following query 𝑄 ′
relaxes 𝑄 with respect to the categorical

attribute Major and the numerical attribute GPA.

SELECT *
FROM Applicants AS a
WHERE (a.Major='CS' or a.Major='IS')

AND a.GPA >= 3.65 AND a.IH >= 100

Data groups and representation constraints. Let 𝐷 be a dataset,

𝑄 a query and 𝑄 (𝐷) the result of executing 𝑄 over 𝐷 . We define

groups in𝑄 (𝐷) using a conjunction of conditions G = ∧𝑖 (𝐴𝑖 𝑜𝑝 𝑣𝑖 )
where 𝐴𝑖 are distinct data attributes in 𝑄 (𝐷), and 𝑜𝑝 can be one

of {=, ≤, <, ≥, >}. For instance, in our running example G is the

condition 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹 . We use 𝑄 (𝐷)G to denote the data tuples

in 𝑄 (𝐷) that satisfy the condition G. A representation constraint

over 𝑄 (𝐷)G is an expression of the form 𝑄 (𝐷)G 𝑜𝑝 𝑥 , where 𝑜𝑝 ∈
{≤, <, >, ≥} and 𝑥 can be a constant or 𝛼 ·𝑄 (𝐷)G′ for some other

data groups defined using G′
and 𝛼 ∈ R. As mentioned above, for

simplicity we assume a single constraint of the form 𝑄 (𝐷)G ≥ 𝑥

where 𝑥 is a constant, but the solution extends to set of any type of

the aforementioned constraints. Given a set of constraints, there

may be multiple ways to relax a query in order to fulfill them.

Example 2.3. Continuing with our example, the constraint over

the number of female student is 𝑄 (𝐷)𝐺𝑒𝑛𝑑𝑒𝑟=𝐹 ≥ 3. The result

of the query 𝑄 ′
given in Example 2.2, a relaxation of 𝑄 from

Example 2.1, satisfies the constraint. Other plausible relaxations

of 𝑄 that satisfy the constrain are the query relaxation that re-

laxes the Major predicate to be (a.Major='CS' or a.Major='IS'
or a.Major='AM'), or the relaxation that relaxes the predicate

GPA to be a.GPA >= 3.65 and the IH predicate to be a.IH >= 80.

The relaxations depicted in the above example suggest the com-

pany various ways to achieve its diversity goal. Each applies differ-

ent modifications to the query. Intuitively, minimal modifications

to the original query are preferred, e.g., a relaxation that relaxes

the predicate GPA to be a.GPA >= 3.65 is preferred over one that

modifies the predicate GPA to be a.GPA >= 3.5, however, relax-
ations that modify different attributes may be incomparable when

no additional preferences information is provided by the end-user.

To this, we are interested in the set of minimal relaxations.

Given a query with a set of predicate P and their relaxation P ′
,

we say that P ′ satisfies a constraint if the output of the correspond-
ing relaxed query satisfies the constraint. Given a constraint 𝑐 , a

3
The categorical relaxation of [24] also include the roll-up. For simplicity we do not

consider hierarchy over categorical attribute, however our model can support roll-up

relaxations as well.
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minimal relaxation of P is a relaxation P ′
such that P ′

satisfies 𝑐 ,

and there is no relaxation of P ′
such that P ′′ ≠ P ′

and P ′′
satisfies

𝑐 . Our goal is then to find all minimal relaxations satisfying the

given constraint. Intuitively, these relaxations form a skyline [7].

We note that there may be many minimal relaxations, this could be

addressed by exploiting methods for refining, reducing and ranking

the set of skyline points (see, e.g., [20]).

Our proposed solution utilizes provenance to find the set of mini-

mal relaxations. In particular we leverage the notion of hypothetical

reasoning [11] to examine the effect of possible relaxations on the

outcome of the query.

2.2 Provenance Model
We next depict our provenance model. We leverage the idea of

conditional tables (c-tables) [17], where tuples are associated with

conditions. To capture the possible relaxations, we annotate tuples

in the data with the query selection conditions. Finally, we follow

the semiring model [16] to propagate the annotations through

query evaluation. Intuitively, when applying a selection predicate

over the data, instead of actually deleting tuples that do not meet

the selection criteria, we annotate each tuple 𝑡 in the data with

a variable (condition) 𝑣 such that 𝑣 is evaluated to 1 if 𝑡 satisfies

the selection predicate and 0 otherwise. Namely, if 𝑄 is a selection

query over 𝐷 with predicates (numerical and categorical) over the

attributes𝐴1, . . . , 𝐴𝑘 , we annotate each tuple 𝑡 ∈ 𝑄 (𝐷) as 𝑝𝑟𝑜𝑣 (𝑡) =∏𝑖=𝑘
𝑖=1 𝐴𝑖 [𝑡 .𝐴𝑖 ] Where [𝑡 .𝐴𝑖 ] denotes the value of the attribute 𝐴𝑖

in 𝑡 . Using the resulting provenance expression we can construct

inequality expressions that express the constraint. The provenance

inequality of the constraint 𝑄 (𝐷)G ≥ 𝑥 is

∑
𝑡 ∈𝑄 (𝐷)G 𝑝𝑟𝑜𝑣 (𝑡) ≥ 𝑥

Example 2.4. Consider again our running example and the con-

straint 𝑄 (𝐷)𝐺𝑒𝑛𝑑𝑒𝑟=𝐹 ≥ 3. The corresponding provenance inequal-

ity is𝑀𝐴𝑀 ·𝐺3.8 · 𝐼𝐻150 +𝑀𝐼𝑆 ·𝐺3.5 · 𝐼𝐻125 +𝑀𝐶𝑆 ·𝐺3.8 · 𝐼𝐻120 +
𝑀𝐶𝑆 · 𝐺3.8 · 𝐼𝐻80 + 𝑀𝐼𝑆 · 𝐺3.75 · 𝐼𝐻140 + 𝑀𝐶𝑆 · 𝐺3.65 · 𝐼𝐻125 ≥ 3.

Where𝑀 and 𝐺 are short for Major and GPA respectively.

Relaxations through valuation. We now establish the connection

between relaxations and valuation of the provenance inequality 𝑝 of

a constraint. A relaxation P that satisfies a given constraint should

correspond to a valuation that satisfies the inequality. Recall that

the set of variables 𝐴𝑖 𝑣 in 𝑝 correspond to the predicates in P. The

valuation assign a value of 0 or 1 to each such variable as follows.

If 𝐴𝑖 is a numerical attribute and 𝑃𝑖 is 𝐴𝑖 ≥ 𝐶𝑖 then 𝑣𝑎𝑙P (𝐴𝑖 𝑣) = 1

if 𝑣 ≥ 𝐶𝑖 and 0 otherwise . If 𝐴𝑖 is a categorical attribute and 𝑃𝑖
is a predicate over 𝐴𝑖 then 𝑣𝑎𝑙P (𝐴𝑖 𝑣) = 1 if 𝑣 satisfies 𝑃𝑖 and 0

otherwise. We denote by 𝑇P (𝑝) the truth value of the inequality

resulting by applying 𝑣𝑎𝑙P (𝐴𝑖 𝑣) on each variable 𝐴𝑖 𝑣 in 𝑝 .

Example 2.5. The truth value𝑇P (𝑝) of the provenance inequality
𝑝 from Example 2.4 and set of predicates P appearing in the query

presented in Example 2.1 is false since the only term in 𝑝 evaluated

to 1 is𝑀𝐶𝑆 ·𝐺3.8 · 𝐼𝐻120 and 1 ≱ 3. The result of the valuation using

the set of predicates P ′
from the query 𝑄 ′

depicted in Example 2.2

is true since the terms 𝑀𝐼𝑆 · 𝐺3.75 · 𝐼𝐻140 and 𝑀𝐶𝑆 · 𝐺3.65 · 𝐼𝐻125

are also evaluated to 1.

We can show the following property of the model.

Proposition 2.6. Let 𝐷 be a dataset and𝑄 be a query.𝑄 satisfies
a constraint 𝑄 (𝐷)G ≥ 𝑥 if and only if 𝑇P (𝑝) = 𝑇𝑟𝑢𝑒 where 𝑝 is the

Δ𝐺 Δ𝐼𝐻 Δ𝑀𝐼𝑆 Δ𝑀𝐴𝑀

1 𝑚1 𝑚1 𝑚4 𝑚4

2 𝑚4 𝑚5 𝑚6 𝑚6

3 𝑚5 𝑚6 𝑚5 𝑚1

4 𝑚6 𝑚2 𝑚2 𝑚5

5 𝑚2 𝑚4 𝑚1 𝑚2

Figure 2: Minimal changes table.𝑚𝑖 corresponds to the 𝑖’th
element in the provenance inequality given in Example 2.4.

provenance inequality of the constraint over 𝑄 (𝐷) and P is the set of
predicates appearing in 𝑄 .

Given the provenance inequality of the constraint over 𝑄 (𝐷)
we can examine the effect of query relaxations on the constraint

satisfaction without the need to access the data and execute the

potential query relaxations. Furthermore, the provenance inequality

may guide the relaxations search as we next explain.

2.3 Generating Minimal Relaxations
We next present a method for generation of minimal relaxations.

Intuitively, given a set of predicates P and a provenance inequality

𝑝 , if 𝑇P (𝑝) = 𝐹𝑎𝑙𝑠𝑒 , a minimal relaxation P ′
increases the number

of terms in 𝑝 that are evaluated to 1. For each term𝑚𝑙 in 𝑝 such

that𝑚𝑙 is evaluated to 0, we can derive the minimal relaxation P ′
𝑚𝑙

required to flip the evaluation of𝑚𝑙 , and the minimal changes in

this relaxation with respect to the attributes of numeric predicates

and values of categorical predicates. For numeric predicates, the

minimal change between 𝑃𝑖 : 𝐴𝑖 ≥ 𝐶𝑖 in P and 𝑃 ′
𝑖
: 𝐴𝑖 ≥ 𝐶 ′

𝑖
in P ′

is𝐶𝑖 −𝐶 ′
𝑖
. For categorical predicates, we consider a minimal change

with respect to each possible attribute value, so if 𝑃𝑖 is a categorical

predicate over 𝐴𝑖 , the minimal change with respect to the (possible

attribute) value 𝑣 is 0 if 𝑣 satisfies both 𝑃𝑖 and 𝑃
′
𝑖
, 1 if 𝑣 satisfies 𝑃 ′

𝑖
but not 𝑃𝑖 , and ∞ otherwise.

Example 2.7. Consider the provenance inequality shown in Ex-

ample 2.4. The minimal required relaxation to flip the valuation of

the first term𝑚1 = 𝑀𝐴𝑀 ·𝐺3.8 · 𝐼𝐻150 is to relax the predicate Major

to be (a.Major='CS' or a.Major='AM'). The minimal changes

with respect to𝐺 and 𝐼𝐻 are 0 and the minimal change with respect

to𝑀𝐴𝑀 is 1 (and 0 with respect to𝑀𝐶𝑆 and ∞ for𝑀𝐼𝑆 ).

The solution is based on Fagin’s Threshold Algorithm [13]. We

sort the terms in the provenance inequality based on the minimal

changes in the minimal relaxation required to flip their evaluation

with respect to each numeric attribute and categorical value. To this

end we use the minimal changes table (𝑀𝐶𝑇 ) with a column Δ𝐴𝑖 for

each numeric attribute and Δ𝐴𝑖 𝑣 for each value 𝑣 of a categorical

attribute. The values in𝑀𝐶𝑇 are terms in the provenance inequality

sorted in an ascending order by their minimal change with respect

to each column. Ties are broken based on their order in the leftmost

column of𝑀𝐶𝑇 , and for the leftmost column, arbitrarily. Figure 2

depicts the table constructed for our running example. Since we

consider only a simple case of relaxation, columns corresponding

to categorical predicates that appear in the predicate set (Δ𝑀𝐶𝑆 )

and terms that are evaluated to 1 by predicates set in the given

query (𝑚3) are omitted from the table.

Searching with the MCT. To search for minimal relaxations, we

traverse the𝑀𝐶𝑇 in a left-right top-down fashion. The algorithm

maintains a result set R, adding (and removing) relaxations to (and
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from) R as it traverses the table. For each term𝑚𝑙 in the table, the

algorithm first computes the minimal relaxation required P ′
𝑚𝑙

to

flip the evaluation of𝑚𝑙 . If P ′
𝑚𝑙

is a satisfying relaxation then it is

compared with the previous relaxations found in R, to determine

the new set R. Otherwise, let 𝑟 and 𝑐 be the current cell’s row and

column indices in the search respectively. The algorithm computes

the minimal relaxation required P ′
M to flip the evaluation of all

the terms in any subset of terms M appearing in column 𝑐 and

rows 1, . . . , 𝑟 which include the term𝑚𝑙 . If for any such subgroup

M, P ′
M is a satisfying relaxation, P ′

M is used to update R. Once a

first minimal relaxation P ′
M was found, whereM is either a single

term or a set of terms, we can compute a stop line, which intuitively

indicates areas of the table that are not relevant for the search since

they are not minimal with respect to the found relaxation. For each

column 𝑐 in the table, the stop line is the maximal row 𝑟 such that

𝑚𝑙 ∈ M appears in row 𝑟 and column 𝑐 of the table.

Example 2.8. Consider again our running example and the𝑀𝐶𝑇

depicted in Figure 2. The algorithm first considers the relaxation

P ′
𝑚1

shown in Example 2.7. This is not a satisfying relaxation, thus

the algorithm continues to the next cells in the first row. None of

the corresponding relaxations are satisfying. Next, the algorithm

start traversing the second row of the table. Since P𝑚4
is not a

satisfying relaxation, it considers the relaxation P{𝑚4,𝑚1 } which
relaxes the predicate Major and IH. This is a satisfying relaxation,

and therefore it is added to the result set R. At this point, the stop
line (marked in blue in the table) is computed. The grey part of the

table can be avoided by the algorithm.

3 CHALLENGES AND OPPORTUNITIES
We have demonstrated the use of provenance for bias mitigation in

the context of group representation in the result of SPJU queries.

Our solution, inspired by the use of provenance for hypothetical

reasoning, utilizes the semiring model to generate provenance in-

equalities that corresponds to constraints over the representation of

groups in the data. We then use these inequalities to find minimal

relaxations that satisfy the constraints with an algorithm based on

Fagin’s Threshold Algorithm. We next highlight intriguing direc-

tion as well as challenges in the development of provenance-based

solution for bias analysis and mitigation in data-driven tools.

Data-driven tools and pipelines comprise multiple phases, e.g.,

data collection or integration, cleaning and analysis, model training,

and result evaluation and analysis. To enable bias mitigation across

these phases models for complex transformation languages are nec-

essary. Provenance has been studied for different query languages

and data transformations (see, e.g., [8, 10, 14, 16]). These solutions

could serve as the inspiration for such provenance based methods.

A major challenge in this regard is handling the model training

phase. We note that [29] has propose the use of provenance for

incremental model updates for linear and logistic regression models.

Another intriguing direction towards this goal is to leverage the

line of works on machine learning algorithm representation using

relational algebra [18, 22], for which provenance models exists.

The solution presented in this paper focuses on adequate group

representation, which is an important facet of fairness. There is a

wealth of study on algoritmic bias, and a broad scope of fairness

definitions and use-cases. E.g., the notion of fairness was stud-

ied in the context of classification, ranking and recommendation

(see, e.g., [25, 28]). Considering group fairness and individual fair-

ness [12], and supporting a wide range of definitions may require

new models and probably novel algorithms for provenance usage.
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